Оценка выбросов CO2 в странах Центральной Азии с применением искусственного интеллекта
Балжан Азибек а , Андрей Билощицкий а , Мохаммад Алхуи Назари б , Нурхат Жакиев а*
a Astana IT University, проспект Мангилик Ел, 55/11, Бизнес-центр ЭКСПО, блок С1, Астана, 010000, Казахстан
b Тегеранский университет, площадь Энгелаб, улица Азар 16, Тегеран, 1417935840, Иран
Email: nzhakiyev@gmail.com
Балжан Азибек: balzhan.azibek@astanait.edu.kz; Андрей Билощицкий: a.b@astanait.edu.kz; Мохаммад Алхуи Назари: nazari.mohammad.a@ut.ac.ir
https://doi.org/10.29258/CAJSCR/2024-R1.v3-2/1-23.eng
30 сентября, 2024
Аннотация
Энергопотребление и доли различных видов энергии в общем объеме энергоснабжения играют решающую роль в объеме выбросов CO2 в различных странах. Помимо факторов, связанных с энергетикой, такие экономические показатели, как валовой внутренний продукт (ВВП), также могут влиять на выбросы. В настоящем исследовании доли различных источников энергии в общем энергоснабжении и ВВП были использованы в качестве вводных данных для модельной оценки выбросов CO2 в трех государствах Центральной Азии, а именно в Казахстане, Узбекистане и Туркменистане. В дополнение к результатам моделирования в статье также описываются важные характеристики энергетических систем целевых стран. На основе сравнения выбросов CO2 на единицу ВВП исследование позволило выявить, что данный индекс в целевых странах превышает среднемировое значение, что обусловливает необходимость принятия срочных мер по сокращению выбросов. Исходные данные для исследования были получены от Международного энергетического агентства (МЭА) и Всемирного банка. В исследовании были применены следующие методы: групповой метод обработки данных (Group Method of Data Handling, GMDH) и метод многослойного перцептрона (Multilayer Perceptron, MLP). Обе модели показали хорошие результаты в оценке выбросов, однако в соответствии с расчетными значениями для примененных критериев был сделан вывод о том, что использование GMDH дает более точные результаты по сравнению с MLP. Средние абсолютные относительные отклонения моделей GMDH и MLP составили приблизительно 3,69% и 4,28% соответственно. Значения R2 для упомянутых моделей составили 0,9936 и 0,9929 соответственно. В большинстве случаев для обеих моделей относительные отклонения между прогнозируемыми и фактическими выбросами CO2 находились в диапазоне ± 5%.
Доступно на английском
Для цитирования: Azibek, B., Biloshchytskyi, A., Nazari, M., Zhakiyev, M. (2024). CO2 emission estimation in Central Asian countries by use of artificial intelligent methods. Central Asian Journal of Sustainability and Climate Research. https://doi.org/10.29258/CAJSCR/2024-R1.v3-2/1-23.eng
Список литературы
Ahmadi, M. H., Dehghani Madvar, M., Sadeghzadeh, M., Rezaei, M. H., Herrera, M., & Shamshirband, S. (2019). Current Status Investigation and Predicting Carbon Dioxide Emission in Latin American Countries by Connectionist Models. Energies, 12(10), 1916. https://doi.org/10.3390/en12101916
Ahmadi, M. H., Jashnani, H., Chau, K. W., Kumar, R., & Rosen, M. A. (2019). Carbon dioxide emissions prediction of five Middle Eastern countries using artificial neural networks. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2019.167 9914
Alhuyi Nazari, M., Mukhtar, A., Yasir, A. S. H. M., Rashidi, M. M., Ahmadi, M. H., Blazek, V., Prokop, L., & Misak, S. (2023). Applications of intelligent methods in solar heaters: an updated review. In Engineering Applications of Computational Fluid Mechanics (Vol. 17, Issue 1). Taylor and Francis Ltd. https://doi.org/10.1080/19942060.2023.2229882
Alhuyi Nazari, M., Salem, M., Mahariq, I., Younes, K., & Maqableh, B. B. (2021). Utilization of Data- Driven Methods in Solar Desalination Systems: A Comprehensive Review. Frontiers in Energy Research, 0, 541. https://doi.org/10.3389/FENRG.2021.742615
Altikat, S. (2021). Prediction of CO2 emission from greenhouse to atmosphere with artificial neural networks and deep learning neural networks. International Journal of Environmental Science and Technology, 18(10), 3169–3178. https://doi.org/10.1007/s13762-020-03079-z
Betting Big on Renewables. (n.d.). USAID. https://www.usaid.gov/stories/betting-big-on-renewables#:~:text=From 2018 to 2020%2C USAID,the road for a year.
Carbon Capture, Utilisation and Storage. (n.d.). IEA. https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage
CO2 Emissions in 2023 A new record high, but is there light at the end of the tunnel? (2024).
Decree of the President of the Republic of Uzbekistan “On measures to radically improve the management system of the fuel and energy industry of the Republic of Uzbekistan” dated 01.02.2019 №UP- 5646. (2022). IEA. https://www.iea.org/policies/13314-decree-of-the-president-of-the-republic-of-uzbekistan-on-measures-to-radically-improve-the-management-system-of-the-fuel-and-energy-industry-of-the-republic-of-uzbekistan-dated-01022019-up-5646
Dossumbekov, Y. K., Zhakiyev, N., Nazari, M. A., Salem, M., & Abdikadyr, B. (2024). Sensitivity analysis and performance prediction of a micro plate heat exchanger by use of intelligent approaches. International Journal of Thermofluids, 22(February), 100601. https://doi.org/10.1016/j. ijft.2024.100601
Elbaz, K., Shen, S., Zhou, A., Yin, Z., & Lyu, H. (2021). Prediction of Disc Cutter Life During Shield Tunneling with AI via the Incorporation of a Genetic Algorithm into a GMDH-Type Neural Network. Engineering, 7(2), 238–251. https://doi.org/10.1016/j.eng.2020.02.016
Electric Vehicles. (2023). IEA. https://www.iea.org/energy-system/transport/electric-vehicles
Energy. (2023). CAREC. https://www.carecprogram.org/?page_id=16#:~:text=Key Projects,support growth in ongoing trade.
Energy efficiency classes of buildings. (2022). IEA. https://www.iea.org/policies/7040-energy-efficiency-classes-of-buildings
Energy Statistics Data Browser. (n.d.-a). IEA. https://www.iea.org/data-and-statistics/data-tools/ energy-statistics-data-browser?country=KAZ
Energy Statistics Data Browser. (n.d.-b). IEA. https://www.iea.org/data-and-statistics/data-tools/ energy-statistics-data-browser?country=UZB
Energy Statistics Data Browser. (n.d.-c). IEA. https://www.iea.org/data-and-statistics/data-tools/ energy-statistics-data-browser?country=TKM
Executive summary. (n.d.). IEA. https://www.iea.org/reports/kazakhstan-2022/executive-summary
Farlow, S. J. (2020). Self-Organizing Methods in Modeling: GMDH Type Algorithms. CRC Press, Boca Raton.
Filik, Ü. B., & Filik, T. (2017). Wind Speed Prediction Using Artificial Neural Networks Based on Multiple Local Measurements in Eskisehir. Energy Procedia, 107, 264–269. https://doi.org/10.1016/J. EGYPRO.2016.12.147
Filipović, S., Orlov, A., & Panić, A. A. (2024). Key forecasts and prospects for green transition in the region of Central Asia beyond 2022. Energy, Sustainability and Society, 14(1), 25. https://doi. org/10.1186/s13705-024-00457-0
García, S., Luengo, J., & Herrera, F. (2015). Data Preprocessing in Data Mining (Vol. 72). Springer International Publishing. https://doi.org/10.1007/978-3-319-10247-4
García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M., & Herrera, F. (2016). Big data preprocessing: methods and prospects. Big Data Analytics, 1(1), 9. https://doi.org/10.1186/s41044-016-0014-0
GDP (current US$) – Kazakhstan. (n.d.). WorldBank. https://data.worldbank.org/indicator/NY.GDP. MKTP.CD?locations=KZ
GDP (current US$) – Turkmenistan. (n.d.). WorldBank. https://data.worldbank.org/indicator/NY.GDP. MKTP.CD?locations=TM
GDP (current US$) – Uzbekistan. (n.d.). WorldBank. https://data.worldbank.org/indicator/NY.GDP. MKTP.CD?locations=uz
Ghalandari, M., Forootan Fard, H., Komeili Birjandi, A., & Mahariq, I. (2020). Energy-related carbon dioxide emission forecasting of four European countries by employing data-driven methods. Journal of Thermal Analysis and Calorimetry, 1–10. https://doi.org/10.1007/s10973-020-10400-y
Heat Pumps. (n.d.). IEA. https://www.iea.org/energy-system/buildings/heat-pumps
KAZAKHSTAN: Law No. 541-IV of 2012 on Energy Saving and Energy Efficiency (2019 Ed.). (2019). Asia- Pacific Energy. https://policy.asiapacificenergy.org/node/135
Kim, M., & Okuyucu, O. (2022). Prediction of Undrained Shear Strength by the GMDH-Type Neural Network Using SPT-Value and Soil Physical Properties. Materials, 15, 6385. https://doi.org/ https://doi.org/10.3390/ ma15186385
Komeili Birjandi, A., Fahim Alavi, M., Salem, M., Assad, M. E. H., & Prabaharan, N. (2022a). Modeling carbon dioxide emission of countries in southeast of Asia by applying artificial neural network. International Journal of Low-Carbon Technologies, 17, 321–326. https://doi.org/10.1093/ijlct/ ctac002
Komeili Birjandi, A., Fahim Alavi, M., Salem, M., Assad, M. E. H., & Prabaharan, N. (2022b). Modeling carbon dioxide emission of countries in southeast of Asia by applying artificial neural network. International Journal of Low-Carbon Technologies, 17, 321–326. https://doi.org/10.1093/ijlct/ ctac002
Kuziboev, B., Saidmamatov, O., Khodjaniyazov, E., Ibragimov, J., Marty, P., Ruzmetov, D., Matyakubov, U., Lyulina, E., & Ibadullaev, D. (2024). CO2 Emissions, Remittances, Energy Intensity and Economic Development: The Evidence from Central Asia. Economies, 12(4), 95. https://doi.org/10.3390/ economies12040095
Law of the Republic of Uzbekistan “On the use of renewable energy sources” dated May 21, 2019 No. ZRU-539. (2022). IEA. https://www.iea.org/policies/13310-law-of-the-republic-of-uzbekistan-on-the-use-of-renewable-energy-sources-dated-may-21-2019-no-zru-539
Luo, X. J., Oyedele, L. O., Ajayi, A. O., Akinade, O. O., Owolabi, H. A., & Ahmed, A. (2020). Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings. Renewable and Sustainable Energy Reviews, 131, 109980. https://doi. org/10.1016/J.RSER.2020.109980
M. K., A. N., & V., M. A. (2020). Role of energy use in the prediction of CO2 emissions and economic growth in India: evidence from artificial neural networks (ANN). Environmental Science and Pollution Research, 27(19), 23631–23642. https://doi.org/10.1007/s11356-020-08675-7
Nationally Determined Contribution (NDC) to the Paris Agreement (2022 Update): Turkmenistan. (n.d.). IEA. https://www.iea.org/policies/17050-nationally-determined-contribution-ndc-to-the-paris-agreement-2022-update-turkmenistan
Navarro, R. I. (2013). Study of a neural network-based system for stability augmentation of an airplane Annex 1 Introduction to Neural Networks and Adaptive Neuro-Fuzzy Inference Systems (ANFIS).
Oh, S., & Pedrycz, W. (2002). The design of self-organizing Polynomial Neural Networks. 141, 237–258.
On protection of the atmospheric air. (2022). IEA. https://www.iea.org/policies/11440-on-protection-of-the-atmospheric-air
Pindoriya, N. M., Singh, S. N., & Singh, S. K. (2008). An adaptive wavelet neural network-based energy price forecasting in electricity markets. IEEE Transactions on Power Systems, 23(3), 1423–1432. https://doi.org/10.1109/TPWRS.2008.922251
Population, total – Kazakhstan. (n.d.). WorldBank. https://data.worldbank.org/indicator/SP.POP. TOTL?locations=KZ
Population, total – Turkmenistan. (n.d.). WorldBank. https://data.worldbank.org/indicator/SP.POP. TOTL?locations=TM
Population, total – Uzbekistan. (n.d.). WorldBank. https://data.worldbank.org/indicator/SP.POP. TOTL?locations=UZ
Radovanović, M., Filipović, S., & Andrejević Panić, A. (2021). Sustainable energy transition in Central Asia: status and challenges. Energy, Sustainability and Society, 11(1), 49. https://doi.org/10.1186/ s13705-021-00324-2
Renewables. (n.d.). IEA. https://www.iea.org/energy-system/renewables
Rezaei, M. H., Sadeghzadeh, M., Alhuyi Nazari, M., Ahmadi, M. H., & Astaraei, F. R. (2018a). Applying GMDH artificial neural network in modeling CO2 emissions in four nordic countries. International Journal of Low-Carbon Technologies, 13(3), 266–271. https://doi.org/10.1093/ijlct/cty026
Rezaei, M. H., Sadeghzadeh, M., Alhuyi Nazari, M., Ahmadi, M. H., & Astaraei, F. R. (2018b). Applying GMDH artificial neural network in modeling CO2 emissions in four nordic countries. International Journal of Low-Carbon Technologies, 13(3), 266–271. https://doi.org/10.1093/ijlct/cty026
Şahin, M., & Erol, R. (2017). A Comparative Study of Neural Networks and ANFIS for Forecasting Attendance Rate of Soccer Games. Mathematical and Computational Applications 2017, Vol. 22, Page 43, 22(4), 43. https://doi.org/10.3390/MCA22040043
The Law About Support the Use of Renewable Energy Sources (amended). (2022). IEA. https://www. iea.org/policies/5407-the-law-about-support-the-use-of-renewable-energy-sources-amended
The Outlook for the Development of Renewable Energy in Uzbekistan. (2014).
Transition to renewable energy sources: economic benefits for entrepreneurs in Kazakhstan. (2024). UNDP. https://www.undp.org/kazakhstan/stories/transition-renewable-energy-sources-economic-benefits-entrepreneurs-kazakhstan
Turkmenistan. (n.d.). IEA. https://www.iea.org/countries/turkmenistan
Turmunkh, B.-E. (2021). Renewable and Non-Renewable Energy Consumption, Carbon Dioxide Emissions, and Economic Growth: Empirical Evidence from Central Asian Countries. Journal of Economics and Development Studies, 9(1). https://doi.org/10.15640/jeds.v9n1a7
UNDP continues to support Turkmenistan in improving energy efficiency and developing renewable energy sources. (n.d.). IEA. https://www.undp.org/turkmenistan/press-releases/undp-continues-support-turkmenistan-improving-energy-efficiency-and-developing-renewable-energy-sources
USAID Energizes Uzbekistan’s First Green Hydrogen Hub. (n.d.). USAID. https://uz.usembassy.gov/ usaid-energizes-uzbekistans-first-green-hydrogen-hub/
USAID Power Central Asia. (n.d.). IEA. https://www.usaid.gov/central-asia-regional/fact-sheets/ usaid-power-central-asia
Uzbekistan. (n.d.). IEA. https://www.iea.org/countries/uzbekistan
Uzbekistan (12/08). (n.d.). U.S. Department of State. https://2009-2017.state.gov/outofdate/bgn/ uzbekistan/113251.htm
Xiu, Z. Wei. (2022). Environmental implications of economic transition in Central Asia: A study of energy consumption and carbon emissions. Top Academic Journal of Economics and Statistics, 7(3), 19–39.
Yuldoshboy, S., Karimov, M., & Kuralbaev, J. (2022). The association between CO2 and economic growth in Central Asian countries: Panel data approach. Journal of Positive School Psychology, 5587–5601.
Zhakiyev, N., Khamzina, A., Zhakiyeva, S., De Miglio, R., Bakdolotov, A., & Cosmi, C. (2023). Optimization Modelling of the Decarbonization Scenario of the Total Energy System of Kazakhstan until 2060. Energies, 16(13), 5142. https://doi.org/10.3390/en16135142
выбросы CO2, интеллектуальные методы, Искусственная нейронная сеть, МГУА, страны Центральной Азии