Spatio-temporal patterns of different tree species response to climatic factors in south Kyrgyzstan

Maksim Kulikov a *, Evgenii Shibkov a, Erkin Isaev a, Azamat Azarov a,b, Roy Sidle a


a University of Central Asia, 125/1 Toktogul Street, Bishkek, 720001, Kyrgyz Republic
b
Czech University of Life Sciences Prague, Kamýcká 129, Praha, 165 00, Czech Republic

*Email: maksim.s.kulikov@gmail.com

Shibkov E.: evgenii.shibkov@ucentralasia.org; Isaev E.: erkiwa@gmail.com; Azarov A.: azamat.azarov@ucentralasia.org; Sidle R.: roy.sidle@ucentralasia.org

https://doi.org/10.29258/CAJSCR/2023-R1.v2-2/23-49.eng

October 10, 2023

Abstract

Understanding forest phenology is essential for monitoring global carbon budgets and managing vegetation resources in a changing climate. In southern Kyrgyzstan, walnut and wild apple trees dominate the forest landscape. These forests contain unique genetic diversity and offer potential for the development of climate-resilient crop varieties. They also support local communities through activities such as grazing, firewood collection, and fruit harvesting. However, these practices pose a threat to natural regeneration. Climate change exacerbates these challenges by altering their ecological niche. Despite this, few studies have examined forest phenology and its relationship to climate in Kyrgyzstan. To address this gap, we collected ecological data from forest plots in several protected areas and one forestry unit. This included tree species coordinates and landscape. Time series of vegetation indices, land surface temperature and precipitation were generated from remote sensing data. Regression analyses showed that temperature trends had limited predictive power for vegetation, while seasonal temperature variations had a positive effect on vegetation until excessive heat was reached, which had a negative effect. Precipitation trends and seasons had the most significant effects on vegetation, with lagged effects. Regression models were developed for Juglans regia L. (R2=0.8) and Malus spp. (R2=0.75) to predict vegetation index from temperature and precipitation data with high accuracy. Spatial heterogeneity in species response to climatic factors was evident within a small area. The study highlights the influence of landscape and climatic diversity on forest dynamics and emphasizes the importance of seasonal climate patterns over interannual trends.

Download the Paper

Available in English

For citation: Kulikov, M., Shibkov, E., Isaev, E., Azarov, A., Sidle, R. (2023). Spatio-temporal patterns of different tree species response to climatic factors in south Kyrgyzstan. Central Asian Journal of Sustainability and Climate Research.  https://doi.org/10.29258/CAJSCR/2023-R1.v2-2/23-49.eng

Rerefences

Adyshev, M. M., Kashirin, F. T., Umurzakov, S. U., Almaev, T. M., Voronina, A. F., Grigorenko, P. G., Dzhamgerchinov, B. D., Zabirov, R. D., Zinkova, Z. Y., Izmailov, A. E., Isabaeva, V. A., Kravchenko, A. V., Mamytov, A. M., Makhrina, L. I., Moldokulov, A. M., Murzaev, E. M., Otorbaev, K. O., Popova, L. I., Yar-Mukhamedov, G. K., … Chernova, L. I. (1987). Атлас Киргизской ССР [Atlas of the Kyrgyz SSR (vol. I)] (in Russian). Fabrika#4.

Aitaliev, A. M., Sakyev, D. D., Nazarkulov, K. B., Amanova, M. T., Berezhneva, V. A., Spektorenko, N. B., Aidaraliev, N. A., Sataev, S. A., Jumanazarova, A. J., Ymanbekov, K. Y., Usupashev, S. E., & Nurdinov, A. N. (2020). Atlas of natural and man-made hazards on the territory of the Kyrgyz Republic (in Russian). Department of Monitoring and Forecasting of Emergency Situations of the Ministry of Emergency Situations of the Kyrgyz Republic.

Azarov, A., Polesny, Z., Darr, D., Kulikov, M., Verner, V., & Sidle, R. C. (2022). Classification of Mountain Silvopastoral Farming Systems in Walnut Forests of Kyrgyzstan: Determining Opportunities for Sustainable Livelihoods. Agriculture 2022, Vol. 12, Page 2004, 12(12), 2004. https://doi.org/10.3390/AGRICULTURE12122004

Beer, R., Kaiser, F., Schmidt, K., Ammann, B., Carraro, G., Grisa, E., & Tinner, W. (2008). Vegetation history of the walnut forests in Kyrgyzstan (Central Asia): natural or anthropogenic origin? Quaternary Science Reviews, 27(5–6), 621–632. https://doi.org/10.1016/j.quascirev.2007.11.012

Beer, R., & Tinner, W. (2008). Four thousand years of vegetation and fire history in the spruce forests of northern Kyrgyzstan (Kungey Alatau, Central Asia). Vegetation History and Archaeobotany, 17(6), 629–638. https://doi.org/10.1007/s00334-008-0142-1

Beer, R., Tinner, W., Carraro, G., & Grisa, E. (2007). Pollen representation in surface samples of the Juniperus, Picea and Juglans forest belts of Kyrgyzstan, central Asia. The Holocene, 17(5), 599–611. https://doi.org/10.1177/0959683607078984

Borchardt, P., Oldeland, J., Ponsens, J., & Schickhoff, U. (2013). Plant functional traits match grazing gradient and vegetation patterns on mountain pastures in SW Kyrgyzstan. Phytocoenologia, 43(3), 171–181. https://doi.org/10.1127/0340-269X/2013/0043-0542

Borchardt, P., Schmidt, M., & Schickhoff, U. (2010). Vegetation patterns in Kyrgyzstan’s walnut-fruit forests under the impact of changing forest use in post-soviet transformation. Erde, 141(3), 255–275.

Botschantzeva, Z. P., & Varekamp, H. Q. (1982). Tulips : taxonomy, morphology, cytology, phytogeography and physiology. Balkema.

Cantarello, E., Lovegrove, A., Orozumbekov, A., Birch, J., Brouwers, N., & Newton, A. C. (2014). Human Impacts on Forest Biodiversity in Protected Walnut-Fruit Forests in Kyrgyzstan. Journal of Sustainable Forestry, 33(5), 454–481. https://doi.org/10.1080/10549811.2014.901918

Cao, J., Xu, X., Zhuo, L., & Liu, K. (2023). Investigating mangrove canopy phenology in coastal areas of China using time series Sentinel-1/2 images. Ecological Indicators, 154, 110815. https://doi.org/10.1016/J.ECOLIND.2023.110815

Cornille, A., Giraud, T., Smulders, M. J. M., Roldán-Ruiz, I., & Gladieux, P. (2014). The domestication and evolutionary ecology of apples. Trends in Genetics, 30(2), 57–65. https://doi.org/10.1016/j.tig.2013.10.002

Dai, X., Yang, G., Liu, D., & Wan, R. (2020). Vegetation Carbon Sequestration Mapping in Herbaceous Wetlands by Using a MODIS EVI Time-Series Data Set: A Case in Poyang Lake Wetland, China. Remote Sensing 2020, Vol. 12, Page 3000, 12(18), 3000. https://doi.org/10.3390/RS12183000

Dulamsuren, C., Khishigjargal, M., Leuschner, C., & Hauck, M. (2014). Response of tree-ring width to climate warming and selective logging in larch forests of the Mongolian Altai. Journal of Plant Ecology, 7(1), 24–38. https://doi.org/10.1093/JPE/RTT019

Dulamsuren, C., Wommelsdorf, T., Zhao, F., Xue, Y., Zhumadilov, B. Z., Leuschner, C., & Hauck, M. (2013). Increased Summer Temperatures Reduce the Growth and Regeneration of Larix sibirica in Southern Boreal Forests of Eastern Kazakhstan. Ecosystems, 16(8), 1536–1549. https://doi.org/10.1007/s10021- 013-9700-1

Eckert, S. (2012). Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data. Remote Sensing 2012, Vol. 4, Pages 810-829, 4(4), 810–829. https://doi.org/10.3390/RS4040810

Fang, X., Chen, Z., Guo, X., Zhu, S., Liu, T., Li, C., & He, B. (2019). Impacts and uncertainties of climate/CO2 change on net primary productivity in Xinjiang, China (2000–2014): A modelling approach. Ecological Modelling, 408. https://doi.org/10.1016/j.ecolmodel.2019.108742

Gao, X., Huete, A. R., Ni, W., & Miura, T. (2000). Optical–Biophysical Relationships of Vegetation Spectra without Background Contamination. Remote Sensing of Environment, 74(3), 609–620. https://doi.org/10.1016/S0034-4257(00)00150-4

Gessner, U., Naeimi, V., Klein, I., Kuenzer, C., Klein, D., & Dech, S. (2013). The relationship between precipitation anomalies and satellite-derived vegetation activity in Central Asia. Global and Planetary Change, 110(0), 74–87. https://doi.org/10.1016/j.gloplacha.2012.09.007

Henebry, G., Tomaszewska, M., & Kelgenbaeva, K. (2017). Linkages between Snow Cover Seasonality, Terrain, and Land Surface Phenology in the Highland Pastures of Kyrgyzstan. In Geophysical Research Abstracts (Vol. 19).

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

Isaev, E., Ermanova, M., Sidle, R. C., Zaginaev, V., Kulikov, M., & Chontoev, D. (2022). Reconstruction of Hydrometeorological Data Using Dendrochronology and Machine Learning Approaches to Bias-Correct Climate Models in Northern Tien Shan, Kyrgyzstan. Water 2022, Vol. 14, Page 2297, 14(15), 2297. https://doi.org/10.3390/W14152297

Isaev, E., Kulikov, M., Shibkov, E., & Sidle, R. C. (2022). Bias correction of Sentinel-2 with unmanned aerial vehicle multispectral data for use in monitoring walnut-fruit forest in western Tien Shan, Kyrgyzstan. Journal of Applied Remote Sensing, 17(2), 022204. https://doi.org/10.1117/1.JRS.17.022204

IUCN. (2022). The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org

IUSS Working Group WRB. (2006). World reference base for soil resources 2006. In World Soil Resources Reports No. 103 (Vol. 43, Issue 02). https://doi.org/10.1017/S0014479706394902

Jiang, F., Kutia, M., Ma, K., Chen, S., Long, J., & Sun, H. (2021). Estimating the aboveground biomass of coniferous forest in Northeast China using spectral variables, land surface temperature and soil moisture. Science of The Total Environment, 785, 147335. https://doi.org/10.1016/J.SCITOTENV.2021.147335

Kang, J., Shishov, V. V., Tychkov, I., Zhou, P., Jiang, S., Ilyin, V. A., Ding, X., & Huang, J. G. (2022). Response of model-based cambium phenology and climatic factors to tree growth in the Altai Mountains, Central Asia. Ecological Indicators, 143, 109393. https://doi.org/10.1016/J.ECOLIND.2022.109393

Kariyeva, J., Leeuwen, W. J. D. van, & Woodhouse, C. A. (2012). Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia (1981-2008). Frontiers of Earth Science, 6(2), 206–225. https://doi.org/10.1007/S11707-012-0315-1

Klein, I., Gessner, U., & Kuenzer, C. (2012). Regional land cover mapping and change detection in Central Asia using MODIS time-series. Applied Geography, 35(1–2), 219–234. https://doi.org/Doi 10.1016/J.Apgeog.2012.06.016

Kulikov, M., & Schickhoff, U. (2017). Vegetation and climate interaction patterns in Kyrgyzstan: spatial discretization based on time series analysis. Erdkunde, 71(2), 143–165. https://doi.org/10.3112/erdkunde.2017.02.04

Kulikov, M., Schickhoff, U., Gröngröft, A., & Borchardt, P. (2017). Modelling Soil Erodibility in Mountain Rangelands of South-Western Kyrgyzstan. Pedosphere. https://doi.org/10.1016/S1002-0160(17)60402-8

Landsat Enhanced Vegetation Index | U.S. Geological Survey. (n.d.). Retrieved September 13, 2022, from https://www.usgs.gov/landsat-missions/landsat-enhanced-vegetation-index

Lazkov, G. A., & Sultanova, B. A. (2011). Checklist of vascular plants of Kyrgyzstan (A. N. Sennikov (Ed.)). Botanical Museum, Finnish Museum of Natural History, University of Helsinki.

Li, C., Wang, R., Cui, X., Wu, F., Yan, Y., Peng, Q., Qian, Z., & Xu, Y. (2021). Responses of vegetation spring phenology to climatic factors in Xinjiang, China. Ecological Indicators, 124, 107286. https://doi.org/10.1016/J.ECOLIND.2020.107286

Li, C., Zhang, C., Luo, G., & Chen, X. (2013). Modeling the carbon dynamics of the dryland ecosystems in Xinjiang, China from 1981 to 2007—The spatiotemporal patterns and climate controls. Ecological Modelling, 267, 148–157. https://doi.org/10.1016/J.ECOLMODEL.2013.06.007

Li, Z., Li, X., Wei, D., Xu, X., & Wang, H. (2010). An assessment of correlation on MODIS-NDVI and EVI with natural vegetation coverage in Northern Hebei Province, China. Procedia Environmental Sciences, 2, 964–969. https://doi.org/10.1016/j.proenv.2010.10.108

Loranty, M. M., Davydov, S. P., Kropp, H., Alexander, H. D., Mack, M. C., Natali, S. M., & Zimov, N. S. (2018). Vegetation Indices Do Not Capture Forest Cover Variation in Upland Siberian Larch Forests. Remote Sensing 2018, Vol. 10, Page 1686, 10(11), 1686. https://doi.org/10.3390/RS10111686

Luo, M., Liu, T., Meng, F., Duan, Y., Bao, A., Xing, W., Feng, X., De Maeyer, P., & Frankl, A. (2019). Identifying climate change impacts on water resources in Xinjiang, China. Science of The Total Environment, 676, 613–626. https://doi.org/10.1016/J.SCITOTENV.2019.04.297

Mace, G. M. (2004). The role of taxonomy in species conservation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1444), 711–719. https://doi.org/10.1098/RSTB.2003.1454

Mamytov, A. M. (1974). Soils of Kyrgyz SSR (in Russian). Ilim.

Molnar, T. (2011). Persian Walnuts (Juglans regia L.) in Central Asia. Annual Report of the Northern Nut Growers Association, 101, 56–69.

Orozumbekov, A., Cantarello, E., & Newton, A. C. (2014). Status, distribution and use of threatened tree species in the walnut-fruit forests of Kyrgyzstan. Forests, Trees and Livelihoods, 24(1), 1–17. https://doi.org/10.1080/14728028.2014.928604

Peng, D., Wu, C., Li, C., Zhang, X., Liu, Z., Ye, H., Luo, S., Liu, X., Hu, Y., & Fang, B. (2017). Spring green-up phenology products derived from MODIS NDVI and EVI: Intercomparison, interpretation and validation using National Phenology Network and AmeriFlux observations. Ecological Indicators, 77, 323–336. https://doi.org/10.1016/j.ecolind.2017.02.024

Propastin, P. A., Kappas, M., Erasmi, S., & Muratova, N. R. (2007). Remote sensing based study on intra-annual dynamics of vegetation and climate in drylands of Kazakhastan. Basic and Applied Dryland Research, 1(2), 138–154. https://doi.org/10.1127/badr/1/2007/138

Propastin, P. A., Kappas, M., & Muratova, N. R. (2008a). A remote sensing based monitoring system for discrimination between climate and human-induced vegetation change in Central Asia. Management of Environmental Quality: An International Journal, 19(5), 579–596. https://doi.org/http://dx.doi.org/10.1108/14777830810894256

Propastin, P. A., Kappas, M., & Muratova, N. R. (2008b). Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. Journal of Environmental Informatics, 12(2), 75–87. https://doi.org/10.3808/jei.200800126

Rahman, A. F., Sims, D. A., Cordova, V. D., & El-Masri, B. Z. (2005). Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophysical Research Letters, 32(19), 1–4. https://doi.org/10.1029/2005GL024127

SAEPF, IBP-NAS-KR, & Aleine. (2006). Kyrgyz Republic Red Data Book (A. Davletkeldiev, E. Shukurov, A. Chynkojoev, A. Burhanov, S. Mamatov, T. Musuraliev, S. Asylbaeva, R. Ionov, E. Kasybekov, I. Soodanbekov, V. Surappaeva, E. Turdukulov, & U. Mambetaliev (Eds.); 2nd ed.). FAO NFPF.

Schickhoff, U., Bobrowski, M., Böhner, J., Bürzle, B., Chaudhary, R. P., Gerlitz, L., Heyken, H., Lange, J., Müller, M., Scholten, T., Schwab, N., & Wedegärtner, R. (2015). Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics, 6(1), 245–265. https://doi.org/10.5194/ESD-6-245-2015

Shaw, R., Luo, Y., Cheong, T. S., Halim, S. A., Chaturvedi, S., Hashizume, M., Insarov, G. E., Ishikawa, Y., Jafari, M., Kitoh, A., Pulhin, J., Singh, C., Vasant, K., & Zhang, Z. (2022). Asia. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/9781009325844.012

Shigaeva, J., Dzhakypbekova, K., Nurdoolot Kyzy, C., Darr, D., & Wolff, H.-P. (2018). Profitability of forest products of walnut-fruit forest of Kyrgyzstan vs agricultural production, case study from Kyzyl Unkur villages. World Mountain Forum.

Shigaeva, J., Kollmair, M., Niederer, P., & Maselli, D. (2007). Livelihoods in transition: changing land use strategies and ecological implications in a post-Soviet setting (Kyrgyzstan). Central Asian Survey, 26(3), 389–406. https://doi.org/10.1080/02634930701702696

Spengler, R. N. (2019). Origins of the apple: The role of megafaunal mutualism in the domestication of Malus and rosaceous trees. Frontiers in Plant Science, 10, 617. https://doi.org/10.3389/FPLS.2019.00617/BIBTEX

statsmodels.regression.linear_model.OLS – statsmodels 0.15.0 (+59). (n.d.). Retrieved September 21, 2023, from https://www.statsmodels.org/dev/generated/statsmodels.regression.linear_model.OLS.html

statsmodels.stats.weightstats.ttest_ind – statsmodels 0.14.0. (n.d.). Retrieved September 19, 2023, from https://www.statsmodels.org/stable/generated/statsmodels.stats.weightstats.ttest_ind.html

statsmodels.tsa.seasonal.seasonal_decompose — statsmodels (0.14.0). (2023). https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.seasonal_decompose.html

Tomaszewska, M. A., & Henebry, G. M. (2020). How much variation in land surface phenology can climate oscillation modes explain at the scale of mountain pastures in Kyrgyzstan? International Journal of Applied Earth Observation and Geoinformation, 87, 102053. https://doi.org/10.1016/j.jag.2020.102053

Tomaszewska, M. A., Nguyen, L. H., & Henebry, G. M. (2020). Land surface phenology in the highland pastures of montane Central Asia: Interactions with snow cover seasonality and terrain characteristics. Remote Sensing of Environment, 240, 111675. https://doi.org/10.1016/j.rse.2020.111675

Torokeldiev, N., Ziehe, M., Gailing, O., & Finkeldey, R. (2019). Genetic diversity and structure of natural Juglans regia L. populations in the southern Kyrgyz Republic revealed by nuclear SSR and EST-SSR markers. Tree Genetics and Genomes, 15(1), 1–12. https://doi.org/10.1007/s11295-018-1311-8

User Guides – Sentinel-2 MSI – Sentinel Online – Sentinel Online. (2023). https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi

van Nocker, S., Berry, G., Najdowski, J., Michelutti, R., Luffman, M., Forsline, P., Alsmairat, N., Beaudry, R., Nair, M. G., & Ordidge, M. (2012). Genetic diversity of red-fleshed apples (Malus). Euphytica, 185(2), 281–293. https://doi.org/10.1007/s10681-011-0579-7

Vinceti, B., Elias, M., Azimov, R., Turdieva, M., Aaliev, S., Bobokalonov, F., Butkov, E., Kaparova, E., Mukhsimov, N., Shamuradova, S., Turgunbaev, K., Azizova, N., & Loo, J. (2022). Home gardens of Central Asia: Reservoirs of diversity of fruit and nut tree species. PLOS ONE, 17(7), e0271398. https://doi.org/10.1371/JOURNAL.PONE.0271398

Volk, G. M., Henk, A. D., Richards, C. M., Forsline, P. L., & Thomas Chao, C. (2013). Malus sieversii: A diverse central asian apple species in the USDA-ARS national plant germplasm system. HortScience, 48(12), 1440–1444.

Wang, X., Li, C., Liang, D., Zou, Y., Li, P., & Ma, F. (2015). Phenolic compounds and antioxidant activity in red-fleshed apples. Journal of Functional Foods, 18, 1086–1094. https://doi.org/10.1016/j.jff.2014.06.013

Wang, Y., Sylvester, S. P., Lu, X., Dawadi, B., Sigdel, S. R., Liang, E., & Julio Camarero, J. (2019). The stability of spruce treelines on the eastern Tibetan Plateau over the last century is explained by pastoral disturbance. Forest Ecology and Management, 442, 34–45. https://doi.org/10.1016/J.FORECO.2019.03.058

Wilson, B., Dolotbakov, A., Burgess, B. J., Clubbe, C., Lazkov, G., Shalpykov, K., Ganybaeva, M., Sultangaziev, O., & Brockington, S. F. (2021). Central Asian wild tulip conservation requires a regional approach, especially in the face of climate change. Biodiversity and Conservation, 1–26. https://doi.org/10.1007/s10531-021-02165-z

Wilson, B., Mills, M., Kulikov, M., & Clubbe, C. (2019). The future of walnut–fruit forests in Kyrgyzstan and the status of the iconic Endangered apple Malus niedzwetzkyana. Oryx, 1–9. https://doi.org/10.1017/S0030605318001230

Winter, M. B., Wolff, B., Gottschling, H., & Cherubini, P. (2009). The impact of climate on radial growth and nut production of Persian walnut (Juglans regia L.) in South Kyrgyzstan. European Journal of Forest Research, 128(6), 531–542. https://doi.org/10.1007/s10342-009-0295-1

Wu, L., Zhao, C., Li, J., Yan, Y., Han, Q., Li, C., & Zhu, J. (2023). Impact of extreme climates on land surface phenology in Central Asia. Ecological Indicators, 146, 109832. https://doi.org/10.1016/J.ECOLIND.2022.109832

Xiao, J., Chevallier, F., Gomez, C., Guanter, L., Hicke, J. A., Huete, A. R., Ichii, K., Ni, W., Pang, Y., Rahman, A. F., Sun, G., Yuan, W., Zhang, L., & Zhang, X. (2019). Remote sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sensing of Environment, 233, 111383. https://doi.org/10.1016/J.RSE.2019.111383

Yan, G., Long, H., Song, W., & Chen, R. (2008). Genetic polymorphism of Malus sieversii populations in Xinjiang, China. Genetic Resources and Crop Evolution, 55(1), 171–181. https://doi.org/10.1007/s10722-007-9226-5

Zaginaev, V., Ballesteros-Cánovas, J. A., Erokhin, S., Matov, E., Petrakov, D., & Stoffel, M. (2016). Reconstruction of glacial lake outburst floods in northern Tien Shan: Implications for hazard assessment. Geomorphology, 269, 75–84. https://doi.org/10.1016/J.GEOMORPH.2016.06.028

Zaginaev, V., Petrakov, D., Erokhin, S., Meleshko, A., Stoffel, M., & Ballesteros-Cánovas, J. A. (2019). Geomorphic control on regional glacier lake outburst flood and debris flow activity over northern Tien Shan. Global and Planetary Change, 176, 50–59. https://doi.org/10.1016/J.GLOPLACHA.2019.03.003

Zhang, C., Lu, D., Chen, X., Zhang, Y., Maisupova, B., & Tao, Y. (2016). The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls. Remote Sensing of Environment, 175, 271–281. https://doi.org/10.1016/j.rse.2016.01.002

Zhang, J., Xiao, J., Tong, X., Zhang, J., Meng, P., Li, J., Liu, P., & Yu, P. (2022). NIRv and SIF better estimate phenology than NDVI and EVI: Effects of spring and autumn phenology on ecosystem production of planted forests. Agricultural and Forest Meteorology, 315, 108819. https://doi.org/10.1016/J.AGRFORMET.2022.108819

Zhu, S., Li, C., Shao, H., Ju, W., & Lv, N. (2019). The response of carbon stocks of drylands in Central Asia to changes of CO2 and climate during past 35 years. Science of The Total Environment, 687, 330–340. https://doi.org/10.1016/J.SCITOTENV.2019.06.089

Zonneveld, B. J. M. (2009). The systematic value of nuclear genome size for “all” species of Tulipa L. (Liliaceae). Plant Systematics and Evolution, 281(1–4), 217–245. https://doi.org/10.1007/s00606-009-0203-7

climate change, forest, remote sensing, species, time series

Publication Alerts: