Water availability for bioenergy in Kazakhstan: Review, preliminary results, and key points

Marat Karatayev a,b

a Institute of Applied Geosciences, 73/2 Timur FrInstitute of System Sciences, Innovation and Sustainability Research, Karl-Franzens University of Graz, Merangasse 18-1, A-8010, Graz, Austria
b Centre for the Environment, University of Nottingham, Innovation Park, NG7 2TU, Nottingham, United Kingdom

*Email: Marat.Karatayev@uni-graz.at


July 31, 2023


In transitional countries with arid climates, water stress is rising as the demand for water rises with population, economic growth, and intensive development of agriculture and energy and change in climate environment. In this regard, transitional nations plan in national programmes and policies alternative energy sources, sustainable food development, and circular water resource usage. However, these nations frequently approach current water, energy, and food planning without taking interactions of these resources and their impact on each other into account. This paper intends to demonstrate the significance of the water, energy, and food nexus approach for Central Asian countries in transition. Kazakhstan is used as an example of a resource-rich, transitional economy in Central Asia. Kazakhstan has set a goal of reaching a 50% share of renewable and alternative energy sources in electricity generation by the year 2050 to reduce water and energy poverty, improve water and energy efficiency, achieve carbon neutrality, and rank among the top 30 developed nations. To meet the water and renewable energy goal, bioenergy plantation is anticipated to develop between 2030 and 2050. The findings of paper show that total withdrawals for bioenergy increase from the reported data of 15503.68 m3 in 2020 to 32182.16 m3 in 2050 under a bioenergy-intensive scenario. The average total increase, or 75.5%, would be 16678.48 m3. As such, policymakers and stakeholders in Central Asian region and Kazakhstan needs to carefully design its national energy goals given its future increase of water withdrawals, and shortage environment.

Download the Paper

Available in English

For citation: Karatayev, M., (2023) Water availability for bioenergy in Kazakhstan: Review, preliminary results, and key points. Central Asian Journal of Sustainability and Climate Researchhttps://doi.org/10.29258/CAJSCR/2023-R1.v2-1/46-61.eng


ADB (2020) Asian Development Bank. Kazakhstan: Establishment of the Kazakhstan Knowledge Center on Integrated Water Resources Management. Available at: adb.org

ADB (2022). Asian Development Bank. Kazakhstan: The country economic and social profile. Available at: data.adb.org

Alimkulov, S., Tursunova, A., Kulebaev, K., Zagidullina, A., Myrzahmetov, A., & Saparova, A. (2019). Resources of river runoff of Kazakhstan. International Journal of Engineering and Advanced Technology, 8(6), 2242-2250.

Allwood, J., Konadu, D., Mourao, Z., Lupton, R., Richards, K., Fenner, R., & McMahon, R. (2016, April). Integrated land-water-energy assessment using the foreseer tool. In EGU General Assembly Conference Abstracts (pp. EPSC2016-17130).

Barrett, T., Feola, G., Khusnitdinova, M., & Krylova, V. (2017). Adapting agricultural water use to climate change in a post-Soviet context: Challenges and opportunities in Southeast Kazakhstan. Human Ecology, 45(6), 747-762.

Barrett, T., Feola, G., Khusnitdinova, M., & Krylova, V. (2017). Adapting agricultural water use to climate change in a post-Soviet context: Challenges and opportunities in Southeast Kazakhstan. Human ecology, 45, 747-762.

Baspakova, G.R., Alimkulov, S.K., Sarkynov, E.S., Saparova, A.A., Kulebayev, K.M. (2022). Impact of climate change and anthropogenic factors on the runoff of the Ertis river. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2022, 2022(5), 6–22.

Bekturganov, Z., Tussupova, K., Berndtsson, R., Sharapatova, N., Aryngazin, K., & Zhanasova, M. (2016). Water related health problems in Central Asia—A review. Water, 8(6), 219.

Berndes, G. (2002). Bioenergy and water—the implications of large-scale bioenergy production for water use and supply. Global environmental change, 12(4), 253-271.

Birkás, M., Jug, D., Kisić, I., Kassai, K. M., Tarnawa, Á., & Jolánkai, M. (2021). Water Management Within the Soil-Plant System – A Challenge for the 21 Century. Acta Horticulturae et Regiotecturae, 24, 16-19.

Bolatova, Z., Tussupova, K., Toleubekov, B., Sukhanberdiyev, K., Sharapatova, K., & Stafström, M. (2021). Challenges of access to WASH in schools in low-and middle-income countries: Case study from rural central Kazakhstan. International Journal of Environmental Research and Public Health, 18(18), 9652.

Bonsch, M., Humpenöder, F., Popp, A., Bodirsky, B., Dietrich, J.P., Rolinski, S., Biewald, A., Lotze‐Campen, H., Weindl, I., Gerten, D. and Stevanovic, M. (2016). Trade‐offs between land and water requirements for large‐scale bioenergy production. Bioenergy, 8(1), 11-24

Chigrinets, A., Duskayev, K., Mazur, L., Chigrinets, L., Akhmetova, S., & Mussina, A. (2020). Evaluation and dynamics of the glacial runoff of the rivers of the Ile Alatau northern slope in the context of global warming. International Journal of Engineering Research, 13(3), 419-426.

Domac, J., Richards, K., & Risovic, S. (2005). Socio-economic drivers in implementing bioenergy projects. Biomass and bioenergy, 28(2), 97-106.

ECT (2020). Energy Charter Treaty. Country profile: Kazakhstan. Available at: energycharter.org

FAO (2018). UN FAO’s AQUASTAT online database. Water use, by sector and by source. Available at: fao.org

FAO (2022). UN FAO’s Excel based Bioenergy and Food Security (BEFS) Approach. Available at: fao.org

Gerbens-Leenes, W., Hoekstra, A.Y., van der Meer, T.H. (2009). The water footprint of bioenergy. Proceedings of the National Academy of Sciences, 106, 10219–10223.

Gheewala, S. H., Berndes, G., & Jewitt, G. (2011). The bioenergy and water nexus. Biofuels, Bioproducts and Biorefining, 5(4), 353-360.

Ha, M., Munster, C. L., & Provin, T. L. (2014). A geographic information systems program to optimize feedstock logistics for bioenergy production for mobile pyrolysis units. Transactions of the ASABE, 57(1), 249-257.

Helerea, E., Calin, M. D., & Musuroi, C. (2023). Water Energy Nexus and Energy Transition—A Review. Energies, 16(4), 1879.

Huang, S., Chen, X., Chang, C., Liu, T., Huang, Y., Zan, C., Ma, X., De Maeyer, P. & Van de Voorde, T. (2022). Impacts of climate change and evapotranspiration on shrinkage of Aral Sea. Science of the Total Environment, 845, 157203.

Imentai, A., Thevs, N., Schmidt, S., Nurtazin, S., & Salmurzauli, R. (2015). Vegetation, fauna, and biodiversity of the Ile Delta and southern Lake Balkhash—A review. Journal of great lakes research, 41(3), 688-696.

Janusz-Pawletta, B. (2015). Current legal challenges to institutional governance of transboundary water resources in Central Asia and joint management arrangements. Environmental Earth Sciences, 73(2), 887-896.

Kaldybayev, A., Chen, Y., Issanova, G., Wang, H., & Mahmudova, L. (2016). Runoff response to the glacier shrinkage in the Karatal river basin, Kazakhstan. Arabian Journal of Geosciences, 9(3), 1-8.

Karatayev, M. (2021). Water-Energy-Food Nexus thinking in Kazakhstan: choice or necessity?. In Kazakhstan’s Developmental Journey (pp. 181-210). Editors: Koulouri A., Mouraviev N. Publisher: Palgrave Macmillan, Singapore.

Karatayev, M., & Hall, S. (2020). Establishing and comparing energy security trends in resource-rich exporting nations (Russia and the Caspian Sea region). Resources Policy, 68, 101746.

Koshim, A., Karatayev, M., Clarke, M. L., & Nock, W. (2018). Spatial assessment of the distribution and potential of bioenergy resources in Kazakhstan. Advances in Geosciences, 45, 217-225.

Malsy A.-K., Karampelas S., Schwarz D., Klemm L., Armbruster T., and Tuan D. A. 2012. Orangey-red to orangey-pink gem spinels from a new deposit at Lang Chap (Tan Huong-Truc Lau), Vietnam. Journal of Gemmology 33: 19– 27.

Maltsoglou, I., Kojakovic, A., Rincón, L. E., Felix, E., Branca, G., Valle, S., Gianvenuti, A., Rossi, A., Thulstrup, A. & Thofern, H. (2015). Combining bioenergy and food security: An approach and rapid appraisal to guide bioenergy policy formulation. Biomass and Bioenergy, 79, 80-95.

Mehta, K., Ehrenwirth, M., Trinkl, C., Zörner, W., & Greenough, R. (2021). The energy situation in Central Asia: A comprehensive energy review focusing on rural areas. Energies, 14(10), 2805.

Mikulčić, H., Baleta, J., Klemeš, J. J., & Wang, X. (2021). Energy transition and the role of system integration of the energy, water and environmental systems. Journal of Cleaner Production, 292, 126027.

Mukhamediev, R. I., Mustakayev, R., Yakunin, K., Kiseleva, S., & Gopejenko, V. (2019). Multi-criteria spatial decision-making support system for renewable energy development in Kazakhstan. IEEE Access, 7, 275-288.

Mukhtarov, S., Humbatova, S., Seyfullayev, I., & Kalbiyev, Y. (2020). The effect of financial development on energy consumption in the case of Kazakhstan. Journal of Applied Economics, 23(1), 75-88.

Nazhmetdinova, A., Sarmanbetova, G. & Magai, A. (2018). The characteristics of pollution in the big industrial cities of Kazakhstan by the example of Almaty. Journal of Environmental Health Science and Engineering, 16, 81-88.

Olsson, O., Gassmann, M., Wegerich, K., & Bauer, M. (2010). Identification of the effective water availability from streamflows in the Zerafshan river basin, Central Asia. Journal of Hydrology, 390(3-4), 190-197.

Reyer, C. P., Otto, I. M., Adams, S., Albrecht, T., Baarsch, F., Cartsburg, M., Coumou, D., Eden, A., Ludi, E., Marcus, R., Mengel, M., Mosello, B., Robinson, A., Schleussner, C.F., Serdeczny, O. & Stagl, J. (2017). Climate change impacts in Central Asia and their implications for development. Regional Environmental Change, 17(6), 1639-1650.

Rivotti, P., Karatayev, M., Mourão, Z. S., Shah, N., Clarke, M. L., & Konadu, D. D. (2019). Impact of future energy policy on water resources in Kazakhstan. Energy Strategy Reviews, 24, 261-267.

Saha, M., & Eckelman, M. J. (2015). Geospatial assessment of potential bioenergy crop production on urban marginal land. Applied Energy, 159, 540-547.

Salnikov, V., Turulina, G., Polyakova, S., Petrova, Y., & Skakova, A. (2015). Climate change in Kazakhstan during the past 70 years. Quaternary International, 358, 77-82.

Singh, S., Kumar, A., & Ali, B. (2011). Integration of energy and water consumption factors for biomass conversion pathways. Biofuels, Bioproducts and Biorefining, 5(4), 399-409.

Sorg, A., Bolch, T., Stoffel, M., Solomina, O., & Beniston, M. (2012). Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change, 2(10), 725-731.

Souza, G. M., Ballester, M. V. R., de Brito Cruz, C. H., Chum, H., Dale, B., Dale, V. H. & Van der Wielen, L. (2017). The role of bioenergy in a climate-changing world. Environmental development, 23, 57-64.

UN (2022). United Nations Population Division. Countries in the world by population. Available at: worldometers.info

UNDP (2021). United Nations Development Programme. The climate change impact on water resources in Kazakhstan. Available at: undp.org

Wang, X., Chen, Y., Li, Z., Fang, G., Wang, F., & Liu, H. (2020). The impact of climate change and human activities on the Aral Sea Basin over the past 50 years. Atmospheric Research, 245, 105125.

WB (2022). World Bank Open Data. Available at: data.worldbank.org

Yang, Y., Fekete, A., Tian, G., Li, H., Ning, D., & He, R. (2022). Comprehensive zoning scheme for vernacular landscapes of China. Acta Horticulturae et Regiotecturae, 25(1), 8-20.

water-energy-food nexus; main path analysis; ArcGIS; Kazakhstan

Publication Alerts: